If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16x^2+48x-92=0
a = 16; b = 48; c = -92;
Δ = b2-4ac
Δ = 482-4·16·(-92)
Δ = 8192
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{8192}=\sqrt{4096*2}=\sqrt{4096}*\sqrt{2}=64\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(48)-64\sqrt{2}}{2*16}=\frac{-48-64\sqrt{2}}{32} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(48)+64\sqrt{2}}{2*16}=\frac{-48+64\sqrt{2}}{32} $
| -2+5x=-3x-6 | | q3+ 12=16 | | 6x-2(5x-1)=3(x-4 | | -7(6x-5)+7=-6(3+5x)-7x | | x2=120 | | 6x-295x-1)=3(x-4) | | 6(n+1)+n=4n-9 | | 8=h2+6 | | 5n=7n | | 18y=80 | | j-1/4=-41/4 | | x+4x=34 | | 10=-13x | | 3(x^2+1^2)=27 | | 2x-3.8=0.6 | | 3(x+1)^2-27=0 | | 30+0.15p=48 | | 2a/3+a5=26 | | 6(2+8x)=-8x+13 | | -12/5=-2-2/5-m | | 1/5(5x-3=2/3(x+1/2) | | -1.5=x/3 | | -19=7(1+6n)+8(7+5n | | -12/5=-2/2/5-m | | –8v+–15v+v−–11v=11 | | -18=p/13 | | 3x+8=2- | | 5.14(12+x)=12x | | -125=-225-m | | -8x+11=-3(x-1)+3x | | a+5=-3a-15-a | | -1+x=-28 |